
1

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 1
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

ELECTRONIC DICE

What is a microcontroller?

A microcontroller is often described as

a 'computer-on-a-chip'. It can be used

as an ‘electronic brain’ to control a

product, toy or machine.

The microcontroller is an integrated circuit

("chip") that contains memory (to store the program), a

processor (to process and carry out the program) and input/

output pins (to connect switches, sensors and output devices like motors).

Microcontrollers are purchased 'blank' and then programmed with a specific control

program. This program is written on a computer and then 'downloaded' into the

microcontroller chip. Once programmed the microcontroller is built into a product to

make the product more intelligent and easier to use.

Example use of a microcontroller.

The picture above shows an electronic dice that can be made to generate a random

number. It can be used like a normal dice in games.

The dice works by switching Light Emitting Diodes (LEDs) on and off in the pattern of

dots found on a traditional dice. The microcontroller is the ‘brain’ of the dice.

Microcontrollers are powerful electronic components that have a memory and can be

programmed to switch things on and off in any sequence. The microcontroller in the dice

can switch the LEDs on and off to show numbers between one and six.

As the ‘diagonal’ pairs on LEDs in the dice always light at the same time, they can be

switched on and off by the same microcontroller output. Therefore 4 outputs (3 pairs

and the central ‘dot’) are required.

�

� � �

�

� �

2

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 2
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

BLOCK DIAGRAMS
The electronic system for an electronic dice can be drawn as a ‘block diagram’.

The push switch is an electronic device that can detect movement and is known as an

‘input’. The microcontroller then ‘decides’ how to behave and may then switch the output

LEDs on in different patterns.

.

WHAT IS THE PICAXE SYSTEM?

The microcontrollers used in devices such as electronic games can be difficult to

program, as they generally use a complicated programming language called ‘assembler

code’, which can be quite difficult to learn.

The PICAXE system makes the microcontrollers much easier to program. The control

sequence can be drawn (and simulated) on the computer as a flowchart, or written in a

simpler programming language called BASIC. This makes it much easier to use the

microcontroller as the complicated ‘assembler code’ does not need to be learnt.

A sample BASIC program and flowchart are shown here. In this case both programs do

the same thing - flash a light (connected to

output 0) on and off every second.

�����

�����	

�����

�
�	

�����

���������

start

high 0

low 0

wait 1

wait 1

�����

������

�	
��
�
�����������
��	�
�

����� ����	

 ������

������

������

3

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 3
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

BUILDING YOUR OWN ELECTRONIC DICE

Design Brief

Design and make an electronic dice The dice must show the numbers 1-6 randomly by

switching LEDs on and off.

Design Specification Points

1) The design will use a PICAXE-08 microcontroller as it’s controller.

2) The design will include LEDs in a dice pattern.

Block Diagram

The block diagram for your safety light may look like this:

Personalising Your Electronic Dice

There are several ways to personalise your dice.

Here are some things to think about:

1) Are you going to build your dice on the circuit board or mount it in a case? If you

use a case you will need to attach the LEDs and switch using wires.

2) What colour and size of LEDs are you going to use? The most common LEDs are red,

but many other sizes and colours are available (e.g. blue).

3) How will you activate the dice? Normally a push switch is used, but you could use

many other types of sensor, for example, you could have a light sensor (LDR) that

can detect changes in light level when you put your hand over it.

�����

������

�	
��
�
�����������
��	�
�

����� ����	

 ������

������

������

4

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 4
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

ELECTRONIC COMPONENTS
The main electronic components you may need for your electronic dice are shown here.

The next few pages describe each of these components in more detail, and also provide

some programming ideas that may be useful when you are later programming your dice

light patterns.

PICAXE-08 microcontroller

light emitting diode (LED)

push switch

3 x AA battery box

and you will also need

picaxe download socket resistors

5

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 5
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

��������	
����

�
�
�
�
�

�
�
�
	
�

����
�	
�

��

��
�����

����

�	��

���

SECTION 2 - ELECTRONIC COMPONENTS

MICROCONTROLLERS

What is a microcontroller?

A microcontroller is often described as a ‘computer-on-a-chip’. It is an

integrated circuit that contains memory, processing units, and input/

output circuitry in a single unit.

Microcontrollers are purchased ‘blank’ and then programmed with a specific

control program. Once programmed the microcontroller is built into a

product to make the product more intelligent and easier to use.

Where are microcontrollers used?

Applications that use microcontrollers include household

appliances, alarm systems, medical equipment, vehicle

subsystems, and electronic instrumentation. Some modern cars

contain over thirty microcontrollers - used in a range of

subsystems from engine management to remote locking!

As an example, a microwave oven may use a single microcontroller to process

information from the keypad, display user information on the seven segment

display, and control the output devices (turntable motor, light, bell and magnetron).

How are microcontrollers used?

Microcontrollers are used as the ‘brain’ in electronic circuits. These electronic circuits are

often drawn visually as a ‘block diagram’. For instance a simplified block diagram for the

microwave above could be drawn like this:

The program for the microcontroller is developed (and tested) on the computer and then

downloaded into the microcontroller. Once the program is in the microcontroller it

starts to ‘run’ and carries out the instructions.

�	���

�����

�	
��
�
�������

����

���
����

������
��	�
�
������

����
��	�
�

����� ����	

 ������

6

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 6
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

How are programs written?

Programs are drawn as flowcharts or typed as ‘BASIC’ listings. This is is explained in the

programming section (section 3) later in this booklet.

How is the program transferred to the microcontroller?

The PICAXE-08 microcontroller is programmed by connecting a cable from the serial

port at the back of the computer to a socket on the printed circuit board (PCB) beside

the microcontroller. This socket (which looks like a headphone socket as found on a

portable CD player) connects to two legs of the microcontroller and to 0V from the

battery. This allows the computer and the microcontroller to ‘talk’ to allow a new

program to be downloaded into the microcontroller’s memory.

The socket and interfacing circuit is included on every PCB designed to be used with the

PICAXE-08 microcontroller. This enables the PICAXE microcontroller to be re-

programmed without removing the chip from the PCB - simply connect the cable

 whenever you want to download a new program!

The circuit diagrams of PICAXE circuits often do not include the components above to

make it easier to understand the input/output connections. However the two resistors

and the socket are always built onto every PICAXE project board!

Output 0

With the PICAXE-08 system leg 7 has two functions - when a program is being run the

leg is known as output 0 and can control outputs like LEDs and motors.

When a program is being downloaded the same leg acts as the ‘serial out’ pin, ‘talking’ to

the computer. Therefore if you also have an output such as an LED connected to the leg,

you will find that the LED will flicker on and off as the program download takes place.

Note:
Most modern computers have two serial ports, normally labelled COM1 and COM2. The

Programming Editor software used to create the programs must be configured for the

correct serial port – select View>Options>Serial Port to select the correct serial port for

your machine.

If you are using a new laptop computer it may only have the newer ‘USB’ type connector.

In this case you must buy a USB to serial adapter to use the PICAXE system. These are

available from most high street computer stores or online from www.tech-supplies.co.uk

(part USB010).

�
�

�
�

� �	�������

�������� !�"#$
�������� !��%
�����&��'

��'

�(")��)��*
"+��",'�$

7

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 7
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

BATTERIES

What is a battery?

A battery is a self-contained source of electronic

energy. It is a portable power supply.

Batteries contain chemicals that store energy.

When connected into a circuit this chemical

energy is converted to electrical energy that can

then power the circuit.

Which battery size should I use?

Batteries come in all sorts of types and sizes. Most

battery packs are made up of a number of 'cells',

and each cell provides about 1.5V. Therefore 4 cells

will generate a 6V battery and 3 cells a 4.5V battery.

As a general rule, the larger the battery the longer it

will last (as it contains more chemicals and so will

be able to convert more energy). A higher voltage

battery does not last longer than a lower voltage

battery Therefore a 6V battery pack made up of 4

AA cells will last much longer than a 9V PP3 battery, as it contains a larger total amount

of chemical energy as it is physically larger. Therefore items that require more power to

work (e.g. a CD walkman which contains a motor and laser to read the CD's) will always

use AA cells rather than PP3 batteries.

Microcontrollers generally require 3 to 6V to work, and so it is better to use a battery

pack made up of two, three or four AAA or AA size cells. Never use a 9V PP3 battery as

the 9V supply will damage the microcontroller.

Which battery type should I use?

Different batteries are made of different chemicals. Zinc-carbon batteries are the

cheapest, and are quite suitable for many microcontroller circuits. Alkaline batteries are

more expensive, but will last much longer when driving devices like motors that require

larger currents. Lithium batteries are much more expensive but have a long life, and so

are commonly used in computer circuits to provide a clock backup.

Rechargeable batteries can be recharged when they 'run-down'. They are generally made

up of nickel and cadmium (Ni-cad) or nickel metal hydroxide (NiMH) chemicals.

-&

8

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 8
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Safety!

Never 'short circuit' any battery. Alkaline and rechargeable batteries can provide a very

large current, and can get so hot that they will actually melt the battery box if you short

circuit them! Always make sure you connect the battery around the correct way (red

positive (V+) and black negative (0V or ground). The microcontroller chip will get hot

and be damaged if the battery is connected the wrong way around.

Using battery snaps.

Battery packs are often connected to electronic printed circuit boards by

battery snaps or wires. Always ensure you get the red and black wires the

correct way around. It is also useful to thread the wires through holes on

the board before soldering it in place - this provides a much stronger

joint that is less likely to snap off.

Never accidentally connect a 9V PP3 battery to the battery snap - this will

damage the microcontroller, which only works between 3 and 6V.

Soldering to battery boxes.

Some small battery boxes require wires to be soldered to metal contacts on the battery

box. In this case you must be very careful not to overheat the metal contact. If the

contacts gets very hot they will melt the plastic and fall off. A good way of stopping this

happening is to ask a friend to hold the metal contact with a pair of small pliers. The

pliers will act as a ‘heat-sink’ and help stop the plastic melting.

9

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 9
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

�&

.�%

--��

LIGHT EMITTING DIODE (LED)

What is an LED?

A Light Emitting Diode (LED) is an electronic component

that gives out light when current passes through it. An

LED is a special type of diode. A diode is a component

that only allows current to flow in one direction. Therefore when

using a diode, it must always be connected the correct way around.

The positive (anode) leg of an LED is longer than the negative

(cathode) leg (shown by the bar on the symbol). The negative leg

also has a flat edge on the plastic casing of the LED.

What are LEDs used for?

LEDs are mainly used as indicator lights. Red and green LEDs are commonly used on

electronic appliances like televisions to show if they are switched on or in 'standby'

mode. LEDs are available in many different colours, including red, yellow, green and

blue. Special 'ultrabright' LEDs are used in safety warning devices such as the 'flashing

lights' used on bicycles. Infra-red LEDs produce infra-red light that cannot be seen by the

human eye but can be used in devices such as video remote-controls.

Using LEDs.

LEDs only require a small amount of current to work,

which makes them much more efficient than bulbs (this

means, for instance, that if powered by batteries the LEDs

will light for a much longer time than a bulb would). If

too much current is passed through an LED it will be

damaged, and so LEDs are normally used together with a

'series' resistor that protects the LED from too much

current.

The value of the resistor required depends on the battery

voltage used. For a 4.5V battery pack a 330R resistor can

be used, and for a 3V battery pack a 120R resistor is

appropriate.

Connecting the LED to a microcontroller.

Because the LED only requires a small amount of current to operate, it can be directly

connected between the microcontroller output pin and 0V (with the series protection

resistor). Two LEDs can be driven from the same pin if you use a resistor for each LED.

10

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 10
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Testing the LED connection.

After connecting the LED it can be tested by a simple program like this:

�����

�����	

�����

�
�	

�����

���������

This program would switch the LED (connected to

output pin 0) on and off every second. If the LED does

not work check:

1) the LED is connected the correct way around

2) the correct resistor is used

3) the correct output pin number is being used in the

program

4) all the solder joints are good

This program flashes the LED connected to output pin 0 on and off 15 times using a

BASIC programming technique called a for...next loop (this technique cannot be used

with flowcharts). The number of times the code has been repeated is stored in the

memory of the PICAXE chip using a ‘variable’ called b1 (the PICAXE contains 14

variables labelled b0 to b13). A variable is a ‘number storage position’ inside the

microcontroller than the microcontroller can use to store numbers as the program is

carried out.

����� ���������������� ���������������������
���

�����	 ���
���������	�����

�������		 ��
��������	���������

�
�	 ���
���������	�
�

�������		 ��
��������	���������

������� ��������������������
���

��� �������������

Switching more than one LED at once.

Sometimes it is useful to switch more

than one LED on or off at the same

time. This saves time when lots of

high and low commands would have

to be used together.

The command that does this is called let pins =

After the equals sign a number is used. Each output pin is given a value, and the number

used in the program is the sum of these values.

start

high 0

low 0

wait 1

wait 1

niP 4 2 1 0

eulaV 61 4 2 1

11

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 11
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Therefore this program switches all of the outputs on, and then all off, and then one on

at a time, in sequence.

������
�
�	 ���
������

������������

�
��

�
��

�
��

�����

������������ ���
������

���� �!"�"�"�#

�������		 ��
��������	���������

����������	 ���
������

����

�������		 ��
��������	���������

����������� ���
���������	���$�����������

�������		 ��
��������	���������

����������� ���
�������������$�����������

�������		 ��
��������	���������

����������� ���
�������������$�����������

�������		 ��
��������	���������

�����������! ���
�������������$�����������

�������		 ��
��������	���������

����������	 ���
������

����

�������		 ��
��������	���������

��������� ��
�������%���������

IMPORTANT! The let pins command only works after the pins have been set as outputs.

To do this you must use a ‘low’ command for each pin at the start of the program.

12

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 12
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

DIGITAL SENSORS (SWITCHES)

What are switches?

A digital sensor is a simple ‘switch’ type sensor that can only be ‘on’ or ‘off’. If a graph is

drawn of the on-off signals as the switch is pushed it will look like this:

Switches are electronic components that detect movement. There are a large number of

different types of switches e.g:

push switches that detect a momentary 'push'

micro-switches with long levers that detect small movements

tilt-switches that detect jolting

reed-switches that detect a magnet being moved

What are switches used for?

Push switches are commonly used on device like keypads. Micro-switches are used in

burglar alarms to detect if the cover is removed from the alarm box. Reed switches are

used to detect doors and windows being opened and tilt switches are often used to detect

movement in devices such as toys, hair-dryers and tool-box alarms.

Switch Symbols.

The symbols for a slide switch

and a push switch are shown here.

�&

/&

��0�

&
"!
$
1�

13

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 13
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Using switches

A switch is used with a resistor as shown in the diagram.

The value of the resistor is not that important, but a 10k

resistor is often used. When the switch is 'open' the 10k

resistor connects the microcontroller input pin down to

0V, which gives an off (logic level 0) 0V signal to the

microcontroller input pin.

When the switch is activated, the input pin is connected

to the positive battery supply (V+). This provides an on

(logic level 1) signal to the microcontroller.

Testing the switch

After connecting the switch it can be tested by a simple program like this. This program

will switch an output on and off according to if the switch is pushed or not.

����� ����%����
���
���

��������&

����������������������
��� ��'����������������������

��������� ���
���
�������%�������

�
���� ����%����
���
���

�����
���&

�����	 ���
������������	���

����� ��
�������������

�
�	 ���
������������	����

��������� ��'�������%���������

In this program the first three lines

make up a continuous loop. If the

input is off the program just loops

around time and time again.

If the switch is then pushed the

program jumps to the label called

‘flash’. The program then flashes

output 0 on for two seconds before

returning to the main loop.

Note carefully the spelling in the

if…then line – input3 is all one word

(without a space). You can use the

word pin3 or input3 to mean the

same thing. Note also that only the

label is placed after the command

then – no other words apart from a

label are allowed at this point.

&2

�&

��'

��%

start

high 0

low 0

pin3=1
Y

 N

wait 2

14

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 14
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

SECTION 3
PROGRAMMING - DRAWING FLOWCHARTS

Flowcharts are a useful tool that allow programs to be drawn graphically to make them

easier to understand. The Programming Editor software includes a flowchart editor that

allows flowcharts to be drawn on screen. These flowcharts can then be converted to

BASIC listings for download into the PICAXE. The flowcharts can also be printed or

exported as graphics files for inclusion within project portfolios.

Detailed instructions for drawing/downloading a flowchart:

1. Connect the PICAXE cable to the computer serial port. Note which port it is

connected to (normally labelled COM1 or COM2).

2. Start the Programming Editor software.

3. Select View>Options to select the Options screen (this may automatically appear).

4. Click on the ‘Mode’ tab and select PICAXE-08

5. Click on the ‘Serial Port’ tab and select the serial port that the PICAXE cable is

connected to. Click ‘OK’

6. Start a new flowchart by clicking the File>New Flowchart menu.

7. Draw the flowchart by dragging the correct symbols onto the screen, and then using

the mouse to draw arrows between the symbols.

8. Once the flowchart is complete it can be converted into a BASIC program by

selecting Flowchart>Convert Flowchart to BASIC. The BASIC program can then be

downloaded into the PICAXE by clicking the PICAXE>Run menu.

9. To print or save the flowchart, use the File menu options. To export the flowchart as

a graphic file, use the File>Export menu. To publish the image in a Word document

select file type EMF. To publish the flowchart on an internet web page use the GIF

file type.

15

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 15
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Flowchart Screen

The Flowchart Editor allows flowcharts to be drawn and simulated on-screen. The

flowchart can then be automatically converted into a BASIC program for downloading

into the microcontroller.

Flowchart Screen

Select Tool
Use this to select and move shapes. When a single shape is selected it’s BASIC code can

be edited in the edit bar at the bottom of the window.

Zoom
Use to zoom in to an area of the graph. Right click to zoom out.

Zoom In/Out
To zoom in click and move the mouse up. To zoom out click and move the mouse down.

Pan
Use this tool to move around the flowchart.

Select Zoom Zoom In/Out Pan Line Out If Delay Sub Other

��������

16

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 16
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Line Tool
Use this tool to draw lines between shapes. Corners can be added by clicking once. When

the line is near to a shape it will ‘snap’ to the connection point.

Label Tool
Use this tool to add descriptive labels or titles to the flowchart.

Out / If / Delay / Sub / Other
Click on these buttons to move to the command sub-menu to select commands.

Drawing Flowcharts

To draw a flowchart click on one of the command menu buttons (out / if / delay / sub /

other) on the toolbar to move to the appropriate command sub-menu. Select the

appropriate command and then click on the screen where the shape is required. Do not

try to locate the shape precisely at first – just drop it in the general area and then use the

select tool to move the shape to the correct position.

Once the shape is in position click on it so that it is highlighted. The BASIC code for the

shape will then appear in the edit bar at the bottom of the screen. Edit the code as

required.

For further information about each command see the ‘BASIC Commands’ help file.

Joining Shapes

Shapes are joined by moving them close together until they ‘snap’ together. Alternately

lines can be drawn between the shapes using the ‘line tool’ from the main toolbar. Note

that it is only possible to join the bottom (side) of shapes to the top of other shapes

(you cannot connect lines to lines). Only one line is allowed out of the bottom of each

shape.

To enable neat diagrams, corners to the lines can be added by clicking with the mouse.

When a line moves close to a connection point it will snap into position and then a click

will finish the line.

Lines cannot be moved. If you try to move a line it will be deleted and a new line must

be created.

17

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 17
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

On Screen Simulation

To simulate the flowchart, click ‘Simulate’ from the Flowchart menu. The program will

then start to run on-screen.

As the program runs each cell is highlighted red as it is carried out. The ‘Inputs/Outputs’

and ‘Variables’ windows also appear when a simulation is being carried out. To adjust

the input values click the on-screen switch (shown beneath the output LED) or slide the

analogue input slider.

The time delay between shapes can be adjusted via the Flowchart options

(View>Options>Flowchart menu).

Note that certain commands have no on-screen simulation equivalent feature. In this

case the command is simply ignored as the flowchart runs.

18

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 18
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Downloading Flowcharts

Flowcharts are not directly downloaded to the microcontroller. First the flowchart is

converted into a BASIC program, which is then downloaded.

To convert a program select ‘Convert’ from the Flowchart menu. The BASIC program for

downloading will then be created.

Shapes that are not connected to the ‘start’ or ‘sub’ shapes in the flowchart are ignored

when the conversion takes place. The conversion will stop if an unconnected shape is

found. Therefore always use a ‘stop’ shape or line to complete the flowchart before

simulation or conversion.

Note that it is possible to quickly convert and then download a flowchart by pressing the

shortcut key <F5> twice.

Using Symbols

Inputs, Outputs and Variables can all be renamed using the ‘Symbol Table’ from the

Flowchart menu. When a symbol is renamed the new name appears in the drop-down

menus on the edit bar. Note that you should not use commands (e.g. switch or sound) as

a symbol as this will generate errors in your converted BASIC program.

Saving and Printing Flowcharts

Flowcharts can be saved, printed and exported as graphic files (for adding to word

processor documents) via the File menu. Flowcharts can also be copied to the Windows

clipboard (for pasting into other applications) via the Edit menu.

19

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 19
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

SECTION 4
PROGRAMMING - BASIC

Programming in BASIC is more powerful than using flowcharts. This is because BASIC

contains more commands, eg. for...next loops, which cannot be used with the graphical

flowchart methods. However you have to be more accurate in your ‘typing’ as no spelling

mistakes are allowed!

The following program is a sample BASIC program which switches output 0 on and off

every second. When you download the program an LED connected to output 0 would

flash on and off every second..

�����

�����	

�������			

�
�	

�����

���������

This program uses the high and low commands to control output pin 0, and uses the

pause and wait commands to make a delay. Wait uses whole second units, whilst pause

uses 1 millisecond (ms) units (1000 ms = 1 second). Therefore in this program both the

delays are the same, just written in different ways.

The last goto main command makes the program ‘jump’ back to the label main: at the

start of the program. This means the program loops forever. Note that the first time the

label is used it must be followed by the colon (:) symbol. This tells the computer the

word is a new label.

20

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 20
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Detailed instructions:

1. Connect the PICAXE cable to the computer serial port. Note which port it is

connected to (normally labelled COM1 or COM2).

1. Start the Programming Editor software.

2. Select View>Options to select the Options screen (this may automatically appear).

3. Click on the ‘Mode’ tab and select PICAXE-08

4. Click on the ‘Serial Port’ tab and select the serial port that the PICAXE cable is

connected to. Click ‘OK’

5. Type in the following program:

�����

�����	

�������			

�
�	

�����

���������

(NB note the colon (:) directly after the label ‘main’ and the spaces between the

commands and numbers)

6. Make sure the PICAXE circuit is connected to the serial cable, and that the batteries

are connected.

7. Select PICAXE>Run. A download bar should appear as the program downloads.

When the download is complete the program should start running automatically –

the LED on output 0 should flash on and off every second.

21

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 21
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Programming Editor Software Reminders:

Toolbar short-cuts:

To download/run a BASIC program:
1. Check the download cable is connected to the PICAXE and the computer’s serial

port

2. Check that the battery is connected to the PICAXE

3. Make sure the Programming Editor software is in the correct mode (look for

‘PICAXE-08’ in the statusbar at the bottom left of the screen).

4. Click PICAXE>Run (or the toolbar icon) (or press the shortcut key F5)

To save a program/flowchart:
1. Click File - Save As... (or the toolbar icon)

2. Type in a filename

3. Click <OK>

To open a saved program/flowchart:
1. Click File - Open... (or the toolbar icon)

2. Select the file type (BASIC or flowchart)

3. Select a filename from the list by clicking on it

4. Click <OK>

To start a new BASIC program:
1. Click File - New

To start a new flowchart:
1. Click File - New Flowchart (or the toolbar icon)

To on-screen simulate a flowchart:
1. Click Flowchart - Simulate... (or the toolbar icon)

2. Click on the flowchart to stop the simulation

To convert a flowchart to BASIC:
1. Click Flowchart - Convert to BASIC... (or press the shortcut key F5)

To print a program/flowchart:
1. Click File - Print... (or the toolbar icon)

2. If you want each program line printed in A BASIC program to have a number, make

sure the ‘Print Line Numbers’ box is checked

3. Click <OK>

22

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 22
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

SECTION 5 - THE ELECTRONIC DICE PCB

The Electronic Dice project uses a PICAXE-08 microcontroller with LED outputs.

The project also uses a switch to activate the LEDs.

The electronic block diagram is shown below.

output - pin0 (leg 7) is connected to LEDs 0

output - pin1 (leg 6) is connected to LEDs 1

output - pin2 (leg 5) is connected to LED 2

output - pin4 (leg 3) is connected to LEDs 4

input - pin3 (leg 4) is connected to the switch

Remember not to confuse the chip ‘leg’ number with the input/output pin number!

Circuit Diagram

The circuit diagram for the electronic dice project is shown below:

�
��

�
�

�
��

	

�

�

�3/&

�&

��
'

�
�%�-

--��

-

�

"#$��

"#$��

"#$��

"#$��

/

4 �

�

�

�

�

�

�

�����

������

�	
��
�
�����������
��	�
�

����� ����	

 ������

������

������

23

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 23
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

BUILDING THE ELECTRONIC DICE PCB

What you will need:

R1 to 7 330R resistor (orange orange brown gold)

R8 22k resistor (red red orange gold)

R9,10 10k resistor (brown black orange gold)

LED1 to 7 5mm LEDs

SW1 push switch

IC1 8 pin IC socket

IC1 PICAXE-08 microcontroller

CT1 PICAXE download 3.5mm socket

BT1 4.5V (3xAA) battery box

PCB printed circuit board

single core wire to connect LEDs and battery box (if required)

Tools:

soldering iron and solder

side cutters

� � �	�������� !��
�

� �!���

� �

!��
���"�

#��

$ $

!���
��"��

%��
��

� �

#����"���

&�����

' '

%��
����"����

(���

))

&�������"��*���

!���

+ +

(���
��"���*���

,	����

- -

!�����"�*���*���

(���

. ./�	��

�"����������
0

����*�����*�����
*�����

1�)-�#��'

(�����'

#�
�	
��
��
�

��
��
��

�
��
�

24

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 24
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Soldering the PCB.

The printed circuit board (PCB) is specially manufactured with a ‘solder resist’ layer to

make it simpler to solder. This is the green ‘lacquer’ layer that covers the tracks so that the

solder does not stick to these tracks. However for successful assembly the PCB must be

carefully assembled and soldered.

When soldering always make sure the solder iron tip is hot and clean. To test if it is hot

enough try to melt a piece of solder on the tip. The solder should melt almost instantly.

Then clean off the melted solder by wiping the tip on a damp sponge.

Remember that solder will only ‘stick’ to hot surfaces. Therefore never melt the solder on

the soldering iron tip and then try to ‘drop’ it onto the joint – this won’t work as the

joint will be cold and so the solder won’t stick.

To successfully solder you must hold the soldering iron in one hand and the solder in the

other. Therefore make sure the board is held on the table so it won’t move (e.g. use a

bulldog clip or get someone else to hold it for you).

Steps to soldering:

1) Clean the soldering iron tip on the damp sponge

2) Press the soldering iron tip against the pad on the PCB AND the leg of the

component. Count to 3 to give the joint time to warm up.

3) Keep the soldering iron in position and touch the solder against the joint. Allow

enough solder to melt to cover the joint.

4) Take the solder away first, then the soldering iron

5) Allow the solder to cool for about 5 seconds before trying to move the board.

After each joint is made make sure it does not accidentally ‘bridge’ across to other joints.

However be aware that some solder joints (e.g. on the two sides of the PICAXE download

socket) have two wires very close together that are already connected by a track (line) on

the PCB. In this case it does not matter if the solder joins together.

Tips!

1) Always start with the smallest components like the resistors. Then move onto larger

components like the IC socket and then finish with the tall components like

capacitors and transistors. Do not try to put all the components in position at once,

only do two or three at a time.

2) Always make sure that the components lie flat on the board before they are soldered.

When using components with long legs like resistors and LEDs, bend the legs so that

the component is held firmly in position before soldering.

3) Make sure the PICAXE stereo download socket ‘snaps’ into position flat on the board

before it is soldered.

4) Make sure that the components that only work one way around (LEDs, diodes,

transistors and capacitors) are correctly aligned before soldering (see the marks on

the PCB).

5) Piezo sounder wires are very thin. Make sure you do not overheat them or they may

melt.

6) Always thread the battery snap wires down and up through the two thread holes

before soldering. This helps make a much stronger joint which is less likely to snap

off.

25

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 25
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

With the electronic dice the LEDs and switch can be soldered directly to the PCB or connected via

wires. The switch wires should be connected to the two diagonal pads marked with a rectangle.

1) Place the 22k (red red orange gold)

resistor and the two 10k (brown black

orange gold) resistors in position.

Bend the legs to hold the resistors in

position and then solder.

2) Place the seven 330R (orange orange

brown gold) resistors in position and

solder. This may be easier if the

resistors are positioned in two groups.

Bend the legs to hold the resistors in

position and then solder.

3) Push the PICAXE stereo download socket onto the PCB and make sure it clicks into
position (so that it lies flat on the board). Solder the five metal square contacts (the

five round plastic support post holes do not have to be soldered). Do not worry if the

solder joins on the two metal contacts either side of the socket as they are supposed

to be joined anyway.

4) Push the IC socket into position. Make sure the notch at one end points towards the

top. Fold the legs over to hold the socket in position and then solder.

5) Solder the push switch in position. The switch only fits one way around.

6) Solder the LEDs into position. Make sure that the flat on one side of the LED aligns

with the flat marked on the PCB

7) Thread the battery clip down through the large hole by the letters AXE. Thread it back

up through the large hole by the letters 105 then solder the black wire into the hole

marked 0v and the red wire into the hole marked V+

8) Carefully check the board to make sure there are no missed joints or accidental solder

bridges.

9) Insert the microcontroller into the socket, ensuring pin1 faces the resistors.

���������	

&2 �&

�

5
5
5
3�
�
&
��

3�
�
3�
�

���

�
�

�
�
6��

�
�
��/

�3/&

�

� � �

�

� �

-

26

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 26
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Testing your circuit.

Step 1 – Check the solder joints.

Check that the solder does not accidentally bridge between two pads. This is most likely

to happen on the LEDs. On the stereo socket the two square pads close together on each

side can be joined as they are already joined by a track on the board. However they must

not be joined to the central round hole.

Step 2 - Check the components.

1) Check that the black battery clip wire is in the hole marked ‘0V’ and the red battery

clip wire is in the hole marked ‘V+’

2) Check that the PICAXE-08 chip is in the socket correctly, with the dent (showing

pin1) closest to the stereo socket.

3) Check that the flat edge of the LEDs is connected to the correct hole on the PCB.

4) Check that the stereo socket is correctly soldered, including the middle square pad

which is often forgotten by mistake.

Step 3 - Connect the battery.

Check the 3 AA batteries are in the battery box correctly. Connect to the battery snap and

then put your finger on the PICAXE chip. If it starts to get hot remove the battery box

immediately as there is a problem – most likely that the chip or the battery wires are

around the wrong way.

27

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 27
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Step 4 – Download a program to test LED 0.

Connect the cable to the back of the computer and to the PICAXE socket on

the PCB. Make sure the cable is pushed fully into the socket

on the PCB.

Make sure the software is in the PICAXE-08 mode and the

correct serial port is selected (see section 4 of this booklet for

more information).

Type in and download the following program:

program like this:

�����

�����	

�����

�
�	

�����

���������

The LEDs should flicker as the program downloads. After the download is complete the

LEDs should flash on and off every second. If the LED does not flash check that it is

around the correct way and that the 120R resistors are in the correct positions on the

PCB.

If the program does not download check that the 22k, 10k, socket and IC socket are all

soldered correctly. Use a multimeter to make sure you are getting 4.5V across the top legs

(1 and 8) of the microcontroller. Check that the cable is pushed firmly into the socket

and that the correct serial port is selected within the software.

Step 5 – Test LED 1.

Repeat the program in step 4, but use high 1 and low 1 instead of high 0 and low 0. This

will test the other LEDs.

Step 6 – Test LED 2.

Repeat the program in step 4, but use high 2 and low 2 instead of high 0 and low 0. This

will test the other LED.

Step 7 – Test LED 4.

Repeat the program in step 4, but use high 4 and low 4 instead of high 0 and low 0. This

will test the other LEDs.

start

high 0

low 0

wait 1

wait 1

28

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 28
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Step 8 – Test The switch.

�����

�����������������()*��

�
�	

���������

()*���

�����	

���������

The LED should light as you press the switch. If they do not check that the switch and

10k resistor are correctly soldered.

If all these tests pass, you can be congratulated as you have correctly built and
assembled your Electronic Dice! It is now time to develop and test your own
program!

start

high 0

pin3=1 Y

 N

low 0

29

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 29
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

SECTION 6 - PROGRAM IDEAS.

Now that you have assembled and tested your Electronic Dice, it is time to develop your

own program. This program can make different LED patterns appear on the Electronic

Dice.

Included on the next pages are two example programs. These are designed to give you a

starting point for your program. You may choose to modify them or to start a completely

new program if you prefer.

Be creative!

Program 1 Explanation

This program has a loop which counts through all the possible dice patterns so quickly

they cannot be seen. When the button is pressed, the loop pauses for two seconds so the

‘rolled’ number can be seen..

Program 2 Explanation

This program uses the random command to generate a number. Because the random

command generates a number between 0 and 255, this number has to be split into

‘zones’ consisting of a sixth of the highest number. For example, if the number generated

is between 0 and 42, the microcontroller lights the LEDs for the number 1. If the number

is between 43 and 84, the LEDs for the number 2 are lit etc. Note also the use of the

‘pins’ command, to keep the program shorter, and the ‘low’ commands at the start of the

program to ensure the LED pins are correctly configured as outputs before the ‘pins’

command is used.

30

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 30
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Program 1

31

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 31
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Program 1

+,,,,,�*����,,,,,

�����

�
�	 +�
�������������������

�
��

�
��

������ +�
������������()*�������

�������������������������
�-

�
��

������ +�
������������()*�������

�������������������������
�-

������ +�
������������()*�������

�������������������������
�-

�
��

������ +�
������������()*�������

�������������������������
�-

������ +�
������������()*�������

�������������������������
�-

�
��

�����	 +�
������������()*������!

�������������������������
�-

���������

����
�-�

����� +
�������������

���������

32

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 32
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Program 2

33

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 33
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

Program 2

+�,,,,,,�*�������������������������,,,,,

�����

�
�	 +���%��()*�������������

�
��

�
��

�
��

�����������������������%������� +�������
����

���������

��%��������

������.���	���������
��� +������������������������'���

������.��!/���������
��0�

������.���!���������
����

������.�/�����������
�����

������.�������������
�
�

���
����

����������� +����
�()*�������

�����

���������

���
�
��

�����������! +����
�()*�������

�����

���������

���
������

�����������	 +����
�()*�������

�����

���������

���
�����

�����������/ +����
�()*�������

�����

���������

���
��0��

������������ +����
�()*�������

�����

���������

���
����

�����������1 +����
�()*������!

�����

���������

34

PICAXE-08 ELECTRONIC DICE PROJECT

���������	 34
��������	
���

��������
���

�������� �!�"

#�$��������� ��%�����&� �� � ��'%��"� ��(�)��$�� �����*� � �+�!"�,,,���$�� �����*

ACKNOWLEDGEMENT
This project development was funded by the

UK Offshore Oil and Gas Industry.

www.oilandgas.org.uk/education/

(c) Revolution Education Ltd 2002

www.rev-ed.co.uk

All rights reserved.

May be photocopied for non-commercial educational

use in classrooms in schools and colleges only.

PICAXE is a trademark of Revolution Education Ltd

