PICAXE ‘SimoN Savs’ GAME

Order Codes:
AXE106 Simon Says Game Self-Assembly Kit

Features
. 4 play switches with different colour LED indicators
. piezo sound device
- speed control preset resistor
- reprogrammable PICAXE18A microcontroller
. simple construction
Also required: - 3x AA batteries
- soldering iron and solder
- side cutters and small cross-head screwdriver
Contents:
R1 1 4Kk7 carbon film 0.25W yellow violdet redgold
R2-5 4 330R carbon film 0.25W orange orange brown gold
R6 1 22k carbon film 0.25W red red orange gold
R7-11 5 10k carbon film 0.25W brown black red gold
VR1 1 100k preset resistor
C1 1 100nF polyester capacitor marked 104 - not polarised
CTiT 1 stereo PICAXE connector ensure ‘snapped’ onto pch
LED1 1 5mm red LED align flat with ink image on pch
LED2 1 5mm yellow LED align flat with ink image on pch
LED3 1 5mm green LED align flat with ink image on pch
LED4 1 5mm blue LED align flat with ink image on pch
Pz1 1 piezo transducer
SW5 1 miniature reset switch only fits one way around!
SW1-44 push switch only fits one way around!
IC1 1 18 pin IC socket use for PICAXE18A
IC1 1 PICAXE18A microcontroller pin 1 faces up
BT1 1 3XAA battery box + clip red wire - V+
1 pcb

revo I u ti O n Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Vesrion 1.117/08/04

AXE106.P65

PICAXE ‘Simon Says' Game

Assembly Instructions

1.

10.

1.

Solder all the resistors in position. The values of the resistors are shown on
the pcb, and the colour codes are given in the table on page 1.

Solder the PICAXE download socket CT1 is position. Make sure it clicks flat
onto the PCB before soldering.

Solder the IC socket in position.

Solder the preset resistor VR1 in position.

Solder the rectangular polyester capacitor C1 in position. It can be used either
way around.

Solder the reset switch in position - it will only fit one way around. Solder the
four push switches in position.

Solder the four LEDs in position. The LED can be soldered directly to the pcb
or connected via wires (not supplied). Make sure the flat on the LED aligns
with the footprint on the pcb.

Solder the piezo sounder PZ in central PIEZO position.

Thread the battery clip through the PCB The red wire is connected to the V+
contact, the black wire to the OV contact.

Push the PICAXE18A chip into it's socket. Make sure pin 1 faces the four
resistors.

Insert 3AA batteries (not supplied) into the battery pack and then connect to
the battery clip.

12.Program the microcontroller using the sample program given.

DO NOT USE A 9V PP3 BATTERY WITH THIS PRODUCT.
ONLY USE THE 4.5V (3xAA CELL) BATTERY BOX SUPPLIED.

The PICAXE-18A chip must be programmed before use.
The sample program can be found in the \samples folder of the
Programming Editor software (file AXE106 Simon Says.bas).

Safety

This product is designed as an educational teaching aid. It is not a toy and should
not be handled by young children due to sharp edges and small parts.
THIS PRODUCT IS NOT DESIGNED AS A TOY FOR SMALL CHILDREN.

I t- Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.1 17/08/04
revoiution AXE106P65

PICAXE ‘Simon Says' Game

SIMON Savs...

Remember the 70’s? ST T

I recently enjoyed the series of programs made by the BBC called ‘I
love 197X You certainly start to realise your age when you
discover that 1978 was 25 years ago! The 1978 program made
reference to the cult toy of the year, ‘Simon’ made by MB Games,
which was loved by children and loathed by parents! This was one
of the very first mass produced electronic games and | remember
playing it for hours with friends and relatives.

Simon

For those too young to remember 1978, the idea behind the
Simon game was quite simple. It was based on the old game
‘Simon Says’ The game was made up of a big round plastic case
with four coloured panels — under each panel was a switch and a
light bulb. You would start the game and the electronics would
light up one of the four panels and sound a tone. The game was
then to press the panel that lit up. Simple enough! Then Simon
would repeat, lighting that panel and adding another. Now your
job was to press the two panels in the correct order. The number of
panels would continue to get longer until you could no longer
remember the sequence, which would cause Simon to issue a
harsh buzz and end the game.

As | watched the TV program it struck me that this vintage toy from 1978 could probably be reproduced with a cheap
PIC microcontroller now at very low cost.

So | set myself the task of building my own ‘Simon Says’ game for under £5 (excluding PCB cost). At the same time |
thought it would provide a perfect example of how to demonstrate how to remember sequences whilst
programming, something that students regularly find difficult.

Internet Trivia

A quick search on the Web soon revealed lots of useless trivia about the game.

The first single player game was released in 1978,
and then in 1979 MB released ‘Super Simon’ which
had two sets of panels so that two people could
play against each other. In 1980 Pocket Simon, a
smaller version of the original game, was released.
There was also a special edition Simon released
with a clear casing so the electronics could be seen
inside. Apparently the ‘Super Simon’ can also be
seen in the film ‘ET’ on the shelf behind ET’s head
when he first speaks!

However | was more interested in how the original
game worked. | discovered it needed both a 9V PP3
and 2 large D cells to make it work, presumably to
power the light bulbs and speaker, but could not
discover much more online.

I t' Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.1 17/08/04
revoiution AXE106P65

PICAXE ‘Simon Says' Game

But fortunately | then discovered that | could buy a real Super Simon, complete with box and instructions, for
just £15. So five days later | was a proud owner of a vintage game, which | then, as you probably expect,
completely disassembled! (Many thanks to www.retrogames.co.uk).

The Original Game

After taking off the cover, the PCB inside the Super
Simon was extremely bare — 8 bulbs buffered by a
couple of standard logic gates and a Texas Instrument
‘microcomputer’ chip. These microcomputer chips were
the first ‘single chip’ controllers widely used in consumer
products, and can be found in a wide range of early 80's
equipment such as vending machines. These single chip
‘microcomputers’ were the predecessors of the modern
PIC microcontrollers, and used in a very similar way.
Many people think microcontrollers are new, when in
actual fact this game was using almost identical single
chip technology 25 years ago!

The New Game

+4.5V0O 4 ®
N —é %

18
17
16
15
14
13
12
1"
10

4k7
4
.—10
5 o]
6
7

G

100k
1

reset —|

DIN|O |~

PICAXE-18A

© 0N O~ WN =

10k
1
| S|

10k
1

o
<
A\
A\
A\
g
py

piezo 1

oV O & ® O O @

The circuit for the microcontroller version of the game is shown in figure 4 (the standard PICAXE serial
download circuit on pins 2,3 is not shown for clarity). The circuit is very straight forward, 4 LED outputs (I
chose red yellow green and blue), a piezo-sounder and 4 push switches. As the PICAXE-18A system was used
for programming | also added the PICAXE download socket to the prototype PCB (shown in Figure 5), so that
the microcontroller could be re-programmed onboard via direct cable link without the need for a programmer.

The cost of the circuit was calculated at under £5 (excluding PCB)! It will also run quite happily off three small
AA cells, certainly no need for the large D cells and the PP3!

I t' Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.1 17/08/04
revoiution AXE106.P65

PICAXE ‘Simon Says' Game

Programming Introduction

The programming task for the Simon game is fairly complicated, and certainly more advanced that most
GCSE projects. However it is a perfect example of how to demonstrate how to ‘remember’ sequences,
something students generally find very complex to do.

When approaching a complicated problem like this it is essential to break the overall task down into
small, manageable chunks, and then put the whole program together at the end. | identified the
following tasks:

1) Wait for the player to press a switch to start the game.

2) Generate a sequence of random numbers (0 to 3 for the four LEDs). In this case | will use 100 steps
(many more than 7 or 8 | can normally repeat in a game!). These numbers are stored in the
microcontrollers data memory, which actually has space for up to 256 steps.

3) Get the microcontroller to play back the numbers. To do this the micro-controller must know how
many steps to playback in each turn of the game. To do this | will use a variable called ‘topstep’ to
remember how many steps to playback. If topstep = 1, one step will be played back, if topstep = 2,
two steps will be played back etc.

4) When the player presses the switch, the microcontroller must light the correct LED for that switch, and
then compare the switch press to see if it is the correct switch. To do this the microcontroller must
also count how many switches the player has pressed, and to do this I will use another variable called
‘playerstep’.

5) When the player reaches the end of the sequence, the microcontroller must acknowledge the success,
add one to the value of topstep, and then repeat the process from 3) above. If the player gets the
sequence wrong, a buzzer will sound and the game reset.

Program

The full program is given overleaf. The program is complex, but is provided mainly as an example of
what can be achieved with microcontrollers. Full comments are given in the program, but a brief
explanation is also included here.

Section 1 in the program is a loop that lights all four LEDs, generates a random number, and then waits
for a switch to be pushed to start the game. By including the ‘random’ command within the loop, it is
constantly varying and so no two games will be the same.

Section 2 use a for...next loop to store 100 random numbers in the microcontrollers memory. As the
random command generates a number between 0 and 255, and we only require the numbers 0 to 3 (for
the four LEDs), a simple comparison test is made to get the four desired values.

Section 3 switches all four LEDs off, and then uses a for..next loop to play back the sequence (up to the
variable called topstep). The ‘beep’ sub-procedure in section 5 is used to light the appropriate LED and
make a sound for each step (the sound is different for each LED to aid memory during the game).

Section 4 first resets the players position to 1. A test is then carried out to see if the player has done all
the steps needed. If all steps have been done the ‘success’ section of code flashes all four LEDs, adds one
more step to the topstep value, and then loops back to section 3.

I t- Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.1 17/08/04
revoiution AXE106P65

PICAXE ‘Simon Says' Game n

If there are still steps to do, the correct target value is retrieved from memory for comparison. The
program then enters a loop waiting for a switch to be pressed.

When the switch is pressed the switch is compared to the target value retrieved from memory. If the
values are the same everything is correct and so the LED is lit via the ‘beep’ sub-procedure, the players
position is increased by one and the program loops back for another switch push.

If the value is incorrect, the ‘fail’ section of code makes a noise and the resets the game.

Summary

Single chip controllers are not new, this game was using them 25 years ago. However electronics has
changed dramatically over the last 25 years, and modern microcontrollers are much cheaper and easier to
use than the original 'microcomputers. Modern microcontrollers reduce large complex circuits down to
simple clean designs, and also dramatically reduce the cost of these products. LED technology has
improved, and no game would ever be manufactured now with bulbs due to cost, safety and power
consumption.

The example program given is fairly complex, but shows the enormous capabilities of the low-cost
microcontrollers. If you wish to build this circuit a PCB is available from Revolution, part AXE106
(www.rev-ed.co.uk).

Figure 6 — Simon Says program

‘ AXE106 Sinmon Says Gane
¢ *** Define the variables used ***

‘* Push switches on inputs 0,1,6,7
‘ Speed preset on input 2

‘ LEDs on outputs 0-3

‘ Piezo on output 7

synbol rand = bl ‘ random nunber store for |oading menory
synbol value = b2 ‘ switch value 0-1-2-3

synmbol playerstep = b3 ‘ position of player in gane

synbol freq = b4 ‘ sound variable

synbol topstep = b5 ‘ nunber of steps in sequence

synbol counter = b6 ‘ general purpose counter

synbol speed = b7 ‘ speed

. .
* k% SeCthn 1 R O

¢ *** This section waits for start ***

¢ khkkhkhkhkhkhkhkhkkhkkhkkhkkhkhkkhkhkkhkkhkhkhkhkhkhkhkhkkhkkhkhkkhkhk**x*x*

‘ wait for any switch to be pushed

“ with all four LEDs Iit

‘ preload rand with any nunber by repeatedly
‘ using the random command in the |oop

init:
let pins = 990001111
random rand

if pin0O = 1 then preload
if pinl = 1 then preload
if pin6 = 1 then preload
if pin7 = 1 then preload
goto init

I t- Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.1 17/08/04
revoiution AXE106P65

PICAXE ‘Simon Says' Game

¢ *** Section 2

¢ *** This secti

EE R S

on loads nmenory for gane ***

¢ EE R R I R I S I

‘ load EEPROM data nenmory with 100 nunbers

* first get the

‘ and then save

random nunber
‘ and then change to either 1,2,3 or 4

into data nenory

prel oad:
let pins = %0000000 ‘ LEDs
for counter = 0 to 100 ¢ for.
let value = 0
random rand ¢ get

if rand > 180 then setO
if rand > 120 then setl
if rand > 60 then set2

set3: let value
set2: let value
setl: let value
set0:

write counter,val ue

next count

¢ *** Section 3

= value + 1 Cl4+1+1
= value + 1 C1+1 =
= value + 1 ‘1

‘0

' save
er ‘' next

(0 to 255)

of f
.next |oop
random nunber 0-255

1
w

in data nenory

| oop

SRR S I

‘¢ *** This section plays back a sequence ***

¢ LR I I R S

‘ switch off the LEDs and then start
‘ a gane with the end counter as 1
990000000 ‘ LEDs

let pins =

of f

let topstep = 1 ‘ reset step nunber to 1
‘ playback the ganme sequence
pl ayback:
readadc 2, speed ‘ read speed val ue
for counter = 1 to topstep‘ for...next |oop
read counter, val ue ‘ get value
gosub beep ‘ nmake the noise
pause 300 ‘ short delay
next counter ‘" 1loop

‘¢ *** Section 4

‘ *** This section detects the players

¢ R R I I I S R R R R O I

now the user
pl ayerstep

ganel oop:
‘ if playerstep

responds
‘ reset the players position to 1

=1

is greater

IR IR S I R R

reply sequence ***

than topstep then all done

if playerstep > topstep then success

‘ get the correct key
* from the EEPROM nenory
read playerstep, val ue

‘ now wait for
loop:if pin7 =
if pin0 =
if pinl =
if piné =
goto | oop

switch
1 then
1 then
1 then
1 then

value is supposed to hit

to be pressed
pushed0
pushedl
pushed2
pushed3

I t- Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.1 17/08/04
revoiution AXE106P65

PICAXE ‘Simon Says' Game

‘ switch pressed so check it is the correct one
“ if it is nmake a beep sound and then continue
‘ else fail the gane
pushedO:

if value <> 0 then fail

let playerstep = playerstep + 1

gosub beep

goto ganel oop

pushedl:
if value <> 1 then fail
let playerstep = playerstep + 1
gosub beep
goto ganel oop

pushed2:
if value <> 2 then fail
let playerstep = playerstep + 1
gosub beep
goto ganel oop

pushed3:
if value <> 3 then fail
let playerstep = playerstep + 1
gosub beep
goto ganel oop

‘ *** Failed so nake noise and junp back to start

* % %

‘ failed so make failed noise, switch off all LEDs

‘ and go back to start

fail:
let pins = %000000 ‘ all LEDs off
sound 7, (80, 100) ‘ make a noise
sound 7, (50, 100)
goto init ‘ back to start

¢ *** Succeeded so add another step to sequence and loop ***

success so nmke a success sound

‘ and then increnment topstep and do another sequence

success:
pause 100 ‘ short delay
let pins = 990001111 ‘ all LEDs on
sound 7, (120,50) ‘ success beep
let pins = 90000000 ‘ all LEDs off
pause 100 ‘ short delay
let topstep = topstep + 1 ‘ add another step
goto playback ‘ loop again

¢ * % % SeCthn 5 LR I S O

¢ *** gsub light LED and beep ***

¢ EIE IR IR I I S S R R R I S

‘sub-procedure to light correct LED
‘and make a different beep sound for each LED
‘value always contains nunmber 0,1,2 or 3.

‘add 1 and nmultiply by 20 to give larger difference

‘in the sound noise

beep:
hi gh val ue ‘ switch on LED
freq = value + 1 ‘ generate sound freq.
freq = freq * 25
sound 7, (freq,speed) ‘ play sound
| ow val ue ‘ switch off I|ED
return ‘ return

revo I u ti O n Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk

Version 1.1 17/08/04

AXE106.P65

